기계자동차

첨단 공학기술의 핵심 분야! 차세대 기계공학분야 전문가 양성! 「기계공학 전공 _ 교직

O 학과개요

기계공학 전공의 교육목표

1. 이론 및 응용기술과 실기 능력 배양 2. 종합적 시스템 설계 및 해석능력 배양

3 창의적이고 책임 있는 인재양성

4 국제경쟁력을 갖춘 전문인 양성

기계공학 전공은 기계공학 분야의 전반적인 이론 및 응용 기술과 실기를 교육하여, CAD/CAM/CAE, 자동제어 분야, 생산 및 설계 분야, 재료 및 파괴역학 분야, 열 및 유체 시스템 분야 에너지 분야와 관련된 종합적 시스템 설계 및 해석 능력을 배양함으로써 관련 산업체와 연구기관에서 기술개발을 창의적으로 선도하고 지역사회 및 국가의 산업 발전에 책임 있는 역할을 지속적으로 담당할 국제경쟁력을 갖춘 기계공학 전문인을 양성한다

O 학과별 커리큘럼

1학년 기본영어 / 실용영어 / 슬로우리딩과 표현 / 전공탐색과 생애설계 [· I /

제조산업융합개론 / 대학수학 / 논리적사유와 글쓰기 / 프로그래밍언어 / 물리학

2학년 전공탐색과 생애설계Ⅲ·Ⅳ / 3D프린팅 / 공학소프트웨어 / 정역학 / 기초전기전자 /

공업수학 / 기계공작법 / ICT융합기술론 / 코너스톤디자인 / 동역학 / 기초자동제어 /

고체역학 / 열역학

3학년 기계요소설계 / 에너지공학 / 유체역학 / 기계재료 / 구조해석설계 / 공작기계 /

3D 응용설계 / 소성공학 / 정밀측정 및 실습 / 기계공학실습 I / 열전달 / 재료강도설계 /

캡스톤디자인

4학년 CAM 실습 / 기계공학실습 II / 유체기계 / 기계진동공학 / 열시스템설계 /

융합캡스톤디자인 / 품질공학 / 금형설계 / 최적설계 / 제품개발설계 / 융합전공세미나

이 학과별 세부전공

산업 열유체공학 해석, 대체/절약/청정 에너지 기술, 전산 열전달 및 유 열·유체

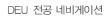
동 해석, 열전달 향상 기술 개발, 쾌적 공조시스템, 발전시스템 성능해석

신소재공학, 원자력/핵융합로 재료공학, 나노 박막기술, 비파괴기술, 기 재료 및 파괴역학

계 구조물을 구성하는 재료의 성형 및 평가

진동 소음계의 제어 및 문제해결에 필요한 동역학계의 시험. 신호처리/ 진동ㆍ제어 및 소음

해석 및 설계법을 배우고 진동, 제어 및 음향학에 관한 첨단 이론 및 기


술 개발

생산 및 설계 가공 및 성형공정의 설계, 사출 및 프레스 금형의 설계, 소성가공 및 탄

소성유한요소법을 이용한 해석 및 생산

O 취득가능자격증

일반기계기사, 기계설계기사, 메카트로닉스기사, 그린전동자동차기사, 건설기계설비기사, 조선기사, 항공기사, 농업기계기사, 철도차량기사, 공조냉동기계기사, 시출금형설계기사, 설비보전기사, 용접기사, 궤도장비정비기사, 제품디자인기사, 방사선비파괴검사기사, 기술지도사(중소벤쳐기업부), 기술행정사(행정안전부), 산업안전지도사(고용노동부), 직업능력개발훈련교사(고용노동부), 기계기술사, 금형기술사, 조선기술사, 철도차량기술사

O 교수진	교수명	세부전공		강의과목	연구분야
	허관도	소성기공		코너스톤디자인, 기계공작법, 소성공학, 융합캡스톤디자인	고압배관용 탄소강관 해석
	민병현	생산공학		기계요소설계, 품질공학	사출성형공정최적화
	손영석	열공학		열전달, 유체기계, 열시스템설계	전자부품냉각, 열교환기
	이두호	최적설계		동역학, 최적설계, 기계진동공학	소음진동 연성계시험
	이상필	기계재료		고체역학, 구조해석설계, 캡스톤디자인, 융합전공세미나	복합재료의 성형 및 평가
	김창호	금형설계 및 가공		ICT융합기술론, 공작기계, 금형설계, 제품기발설계	PCD의 와이아방전가공
	이진경	재료강도 및 비파고	긔	물리학, 정역학, 기초전기전자, 재료강도설계	원자력 배관 비파고평가
	석명은	열유체공학		열역학, 유체역학, 기계공학 실험	Nano-fluidics
	손인수	진동		대학수학, 공학소프트웨어, 기초자동제어, 공업수학	접합구조물의 진동특성
	예상돈	생산 및 응용설계		프로그래밍언어, 3D프린팅, 정밀측정 및 실습	플라스틱성형 및 설계
	배효준	생산 및 제어공학		산업체 탐색, CAM실습, 인턴십	윤활미찰, 정밀기공
O 졸업 후 진로	기계분야		기계공학기술자, 건설기계공학기술자, 금형공학기술자, 사무용기계공학 기술자, 기계감리기술자, 자재구매사무원		
	자동차분야		자동차공학기술자, 자동차디자이너, 자동차정비원, 기술영업원 자동차부품 조립 및 검사원		
	조선분야		조선공학기술자, 해양플랜트기술자		
	정보통신분야		컴퓨터하드웨어 기술자, 통신공학기술자, 컴퓨터부품 및 주변기기 개발 기술자, 통신기술개발자, IT컨설턴트		
	전기전자분야		전기공학기술자, 발전설비기술자, 전기제품개발기술자, 전기및전자제품 생산 관리자, 전기전자장비 캐드원		
	화학분야		화학공학플랜트기술자, 화학제품생산 관리자, 석유화학 기술자, 고무 및 플라스틱화학 기술자, 화학공학시험원		
	생산관리분야		생산관리사무원, 제품생산관련 관리자, 수리 및 정비 관리자, 농림어업 관리자		
안전관리분야 연구소		비분야	전기	기안전관리기술자, 공장전기안전관리원, 빌딩	당전기안전관리 원
		국가연구소연구원, 기업연구소연구원			
	대학		국니	내 및 국외 대학원 진학	

기계공학 전공

O 유망 직종 소개	기계공학기술자	기계제품 및 시스템의 설계 및 생산, 공정관리, 기계장비의 유지관리 및 보수, 기술지도		
	자동차공학기술자	자동차 엔진 및 변속기, 차체 등 자동차 관련 부품 등에 대한 설계 및 생산		
	조선공학기술자	선박엔진 설계 및 생산, 해저자원 탐사를 위한 해양구조물 설계 및 제조, 플랜트 구조 설계 및 제조		
	항공 · 우주공학기술자	항공기나 헬리콥터, 로켓, 우주선, 인공위성 등과 같은 비행체를 연구· 개발하고 설계·제작		
	철도차량공학기술자	철도차량과 철도차량의 엔진 및 부품 설계·제작		
	플랜트공학기술자	정유공장이나 화학공장, 발전소, 소각처리장 및 해양플랜트 등과 같은 대규모 설비나 공장 설계·시공·감리		
	산업기계공학기술자	농업, 광업, 제조업, 건설업 등 각 산업분야의 기계 및 설비, 공구에 대해연구·개발과 설계, 제작 및 유지·보수		
○ 취업현황	분야	진출비율(%)		
	대기업/공공기관	10%		
	중견 제조기업	25%		
	중소 제조기업 기타	50% 15%		
	714	10/0		
O 학과학생활동	무한구동(동아리)	자작자동차 동이리로서 기계공학에서 배운 전공지식을 바탕으로 자동차를 직접 제작하며, 발생하는 문제점을 해결해 나가는 과정에서 지식을 연마하고 공학교육의 현장성을 강화해 나가는 취업동이리		
	DE-MECA(동아리)	AutoCAD를 기반으로 한 설계프로젝트 동아리로서 다양한 CAD Tool의 디자인 노하우를 축적하고 CAD/CAM을 통한 제품개발을 추진함으로써 실무능력 증진		
O 자랑스러운 동문	왕00 83학번	동창주조창 대표이사 • 업종 : 선박부품, 산업기계, 금형생산		
	김00 94학번	일본 교토대학 박사학위 영산대학교 기계공학과 교수		
O 유사학과	메카트로닉스공학과	 유사점: 기계구조물의 운동을 지배하는 근본원리와 컴퓨터를 이용해 기계요소를 설계하고 가공 차이점: 이날로그와 디지털 전기전자회로 이론 및 응용 등을 다루고 기계, 전자의 통합된 시스템을 해석 		
	신소재공학과	 유사점: 기계재료의 구조 및 제조에 대한 이론적인 내용과 재료강도에 대한 실험적인 측정 차이점: 세라믹과 같은 전기전자재료의 제조와 재료의 물리화학에 대한 이론과 실험 		

	기계자동차공학과	 유사점: 기계공학의 전문지식을 바탕으로 종합설계능력 및 신기술 개발과 응용능력 차이점: 자동차용 동력기계의 이론적 작동원리의 구조, 성능 등을 비교 하며 설계 		
O 학과에서 필요로 하는 학생 특성 (또는 인재상)	 전공이론, 현장실무, 창조력이 융합된 현장주제 해결능력 창의적 설계, 성능평가, 생산관리가 통합된 핵심부품 개발기술 창조능력 창조적인 아이템을 벤처기업으로 견인하는 기술기반 창업능력 기계부품 산업의 급변에 순응하는 도전정신과 리더십을 겸비한 창의능력 			
O 학과 진학을 위한 스터디 멘토	수학(공통수학)	대학수학은 1학년 1학기에 개설되어 있으며 역학 교괴목의 이해도를 높 이기 위한 선행 기초교과목		
	과학(물리)	물리학은 1학년 2학기에 개설되며 공학에 필요한 다양한 물리현상 및 공학 응용능력 향상을 위한 기초과목		
	수학(미분과 적분)	기계공학 전공교과목 내용의 이해 및 문제해결과 관련한 고등수학에 대한 선행 기초교과목		
○ 고교생 대상 추천도서	The Goal	미국의 기업과 경제뿐 아니라 세계 여러 나라의 기업과 경제에 지대한 영향을 끼친 경제경영의 고전으로 국내 출간 14주년 기념 개정판이다. 3 개월 안에 이익을 내지 못하면 곧 폐쇄 될 위기에 처한 베어링턴 공장의 공장장 알렉스 로고, 그리고 그의 직원들이 자산들에게 닥친 위기의 원 인을 되짚으며 문제를 하나하나 해결해나가는 과정을 그린 소설이다.		
	교양있는 엔지니어	평생을 엔지니어로 살아온 저자가 자신의 경험을 바탕으로 공학도들에 게도 인문학적 수양이 필요하다는 것을 알려준다. 엔지니어의 윤리 의식과 범위, 공학이 가지고 있는 문제점과 여성 엔지니어가 갖는 정체성, 엔지니어의 소득과 만족도 등 다양한 분야에서의 엔지니어가 지니고 있는 문제점을 찾고 대안을 제시한다.		
	기계공 시모다	리처드는 10분에 3달러씩 받고 사람들을 오래된 복엽비행기에 태워주는 일을 하다 같은 일을 하는 시모다를 만나면서 눈에 보이는 것들을 버리 고 자신의 참모습을 찾아간다는 이야기다. 뻔한 이야기라고 느껴질 수도 있지만, 문장 하나하나, 단어 하나하나, 그리고 그 상징을 하나씩 꼽아보 게 되고 이를 실천해 간다면 분명 인생에 큰 도움이 될 만한 책이다.		
	노벨상과 수리공	인류가 지금까지 발전하는 데 초석을 다진 엔지니어링의 역사와 인류의 역사에 대한 이야기를 담고 있다 엔지니어링과 과학의 차이점을 알아보고, 엔지니어링이 우리 삶에 얼마나 다양한 발전을 도모하였는지 책을 통해 알아본다.		
	움직이는 사물의 비밀	기계공작 DIY를 하기 위해 필요한 기초적인 기계공학 지식 및 하드웨어 소개. 무엇을 만들고 싶은데 재료를 어디서 구입하고, 어떻게 만들어야 하는지 막막한 일반인을 위한 책이다.		